The Antimicrobial Potential of Citrus sinensis Essential Oil in vitro and in situ
Keywords:
in situ, in vitro, antimicrobial activity, red orange essential oilAbstract
Essential oils (EOs) are naturally occurring complex secondary metabolites of plants that play a role in the body's defence against pathogens, environmental factors and physiological stresses. They have a range of biological properties such as antibacterial, anticancer, anti-inflammatory and antioxidant properties. The mechanisms of their antibacterial activity have been thoroughly investigated. It is known that EOs can inactivate bacteria by targeting their cytoplasm, cell wall or cell membrane. The aim of our research was to observe the antibacterial activity of red orange (Citrus sinensis) EO in situ via vapor phase and in vitro using the disc diffusion method. In addition to the antimicrobial activity, the antibiotic activity against five plant diseased bacteria was also monitored. The results of our analyses showed that the disk diffusion approach and vapor phase were the most effective antibacterial strategies against Pectobacterium carotovarum. Plants have an innate ability to produce a diverse range of compounds, especially secondary metabolites, which, due to their biological properties, have been attributed a protective role against diseases. For integrated crop pest management, biological control is not a new idea and has recently attracted much attention.
References
Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, Volume 11, 1645–1658. https://doi.org/10.2147/IDR.S173867
Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310
Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309–318. https://doi.org/10.1179/2047773215Y.0000000030
Terreni, M., Taccani, M., & Pregnolato, M. (2021). New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules, 26(9), 2671. https://doi.org/10.3390/molecules26092671
Azghar, A., Dalli, M., Loukili, E. H., Belbachir, Y., Tahri, M., Benaissa, E., Ben Lahlou, Y., Elouennass, M., & Maleb, A. (2023). Evaluation of the Antibacterial Activity of Essential Oil of Dysphania ambrosioides (L.) Mosyakin and Clemants Against Clinical Multidrug-Resistant Bacteria. Asian Journal of Plant Sciences, 22(1), 75–81. https://doi.org/10.3923/ajps.2023.75.81
Dalli, M., Azizi, S., Benouda, H., Azghar, A., Tahri, M., Bouammali, B., Maleb, A., & Gseyra, N. (2021). Molecular Composition and Antibacterial Effect of Five Essential Oils Extracted from Nigella sativa L. Seeds against Multidrug-Resistant Bacteria: A Comparative Study. Evidence-Based Complementary and Alternative Medicine, 2021, 1–9. https://doi.org/10.1155/2021/6643765
Iseppi, R., Mariani, M., Condò, C., Sabia, C., & Messi, P. (2021). Essential Oils: A Natural Weapon against Antibiotic-Resistant Bacteria Responsible for Nosocomial Infections. Antibiotics, 10(4), 417. https://doi.org/10.3390/antibiotics10040417
Liu, Y., Heying, E., & Tanumihardjo, S. A. (2012). History, Global Distribution, and Nutritional Importance of Citrus Fruits. Comprehensive Reviews in Food Science and Food Safety, 11(6), 530–545. https://doi.org/10.1111/j.1541-4337.2012.00201.x
Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., Xiao, C., Lu, C., & Liu, Y. (2015). Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal, 9(1), 68. https://doi.org/10.1186/s13065-015-0145-9
Liu, S., Lou, Y., Li, Y., Zhang, J., Li, P., Yang, B., & Gu, Q. (2022). Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Frontiers in Nutrition, 9, 968604. https://doi.org/10.3389/fnut.2022.968604
Cheng, S.-S., Chung, M.-J., Lin, C.-Y., Wang, Y.-N., & Chang, S.-T. (2012). Phytochemicals from Cunninghamia konishii Hayata Act as Antifungal Agents. Journal of Agricultural and Food Chemistry, 60(1), 124–128. https://doi.org/10.1021/jf2042196
Sheikh, M., Safiuddin, A., Khan, Z., Rizvi, R., & Mahmood, I. (2013). Antibacterial and antifungal potential of some medicinal plants against certain phytopathogenic micro-organisms. Archives Of Phytopathology And Plant Protection, 46(9), 1070–1080. https://doi.org/10.1080/03235408.2012.757859
Velázquez-Nuñez, M. J., Avila-Sosa, R., Palou, E., & López-Malo, A. (2013). Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control, 31(1), 1–4. https://doi.org/10.1016/j.foodcont.2012.09.029
Souza, E. L. D., Lima, E. D. O., Freire, K. R. D. L., & Sousa, C. P. D. (2005). Inhibitory action of some essential oils and phytochemicals on the growth of various moulds isolated from foods. Brazilian Archives of Biology and Technology, 48(2), 245–250. https://doi.org/10.1590/S1516-89132005000200011
Chanthaphon, S., Chanthachum, S., & Hongpattarakere, T. (2008). Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. Against food-related microorganisms. Songklanakarin Journal of Science & Technology, 30.
Rammanee, K., & Hongpattarakere, T. (2011). Effects of Tropical Citrus Essential Oils on Growth, Aflatoxin Production, and Ultrastructure Alterations of Aspergillus flavus and Aspergillus parasiticus. Food and Bioprocess Technology, 4(6), 1050–1059. https://doi.org/10.1007/s11947-010-0507-1
Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends in Food Science & Technology, 19(3), 156–164. https://doi.org/10.1016/j.tifs.2007.11.006
Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems – A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Borotová, P., Štefániková, J., Vukovic, N. L., Vukic, M., Kunová, S., Felsöciová, S., Miklášová, K., Savitskaya, T., & Grinshpan, D. (2021). Chemical composition and biological activity of Salvia officinalis essential oil. Acta Horticulturae et Regiotecturae, 24(2), 81–88. https://doi.org/10.2478/ahr-2021-0028
Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Djenane, D. (2015). Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus. Foods, 4(4), 208–228. https://doi.org/10.3390/foods4020208
Cuca, L. E., Leon, P., & Coy, E. D. (2009). A bicyclo [3.2. 1] octanoid neolignan and toxicity of the ethanol extract from the fruit of Ocotea heterochroma. Chemistry of natural compounds, 45, 179–181.
Fernández-López, J., Zhi, N., Aleson-Carbonell, L., Pérez-Alvarez, J. A., & Kuri, V. (2005). Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Science, 69(3), 371–380. https://doi.org/10.1016/j.meatsci.2004.08.004
Ambrosio, C. M. S., De Alencar, S. M., De Sousa, R. L. M., Moreno, A. M., & Da Gloria, E. M. (2017). Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Industrial Crops and Products, 97, 128–136. https://doi.org/10.1016/j.indcrop.2016.11.045
Schneider, K., Van Der Werf, W., Cendoya, M., Mourits, M., Navas-Cortés, J. A., Vicent, A., & Oude Lansink, A. (2020). Impact of Xylella fastidiosa subspecies pauca in European olives. Proceedings of the National Academy of Sciences, 117(17), 9250–9259. https://doi.org/10.1073/pnas.1912206117
Sanchez, B., Barreiro-Hurle, J., Soto-Embodas, I., & Rodriguez-Cerezo, E. (2019). The Impact Indicator for Priority Pests (I2P2): A tool for ranking pests according to Regulation (EU) 2016/2031. JRC Research Reports, Article JRC116973. https://ideas.repec.org//p/ipt/iptwpa/jrc116973.html
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
Kannan, V. R., & Bastas, K. K. (Ed.). (2015). Quorum Sensing in Plant Pathogenic and Plant-Associated Bacteria. V Sustainable Approaches to Controlling Plant Pathogenic Bacteria (0 vyd., s. 240–257). CRC Press. https://doi.org/10.1201/b18892-16
Settanni, L., Palazzolo, E., Guarrasi, V., Aleo, A., Mammina, C., Moschetti, G., & Germanà, M. A. (2012). Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control, 26(2), 326–330. https://doi.org/10.1016/j.foodcont.2012.01.050
Han, Y., Sun, Z., & Chen, W. (2019). Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules, 25(1), 33. https://doi.org/10.3390/molecules25010033
Połeć, K., Broniatowski, M., Wydro, P., & Hąc-Wydro, K. (2020). The impact of β-myrcene – the main component of the hop essential oil – on the lipid films. Journal of Molecular Liquids, 308, 113028. https://doi.org/10.1016/j.molliq.2020.113028
Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2015). Natural food additives: Quo vadis? Trends in Food Science & Technology, 45(2), 284–295. https://doi.org/10.1016/j.tifs.2015.06.007
Robertson, G. L. (2005). Food Packaging: Principles and Practice, Second Edition (2nd vyd.). CRC Press. https://doi.org/10.1201/9781420056150
Véronique, C. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat science, 78(1–2), 90–103.
Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van Den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: Legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103–S112. https://doi.org/10.1016/j.tifs.2008.09.011
Ozdemir, M., & Floros, J. D. (2004). Active Food Packaging Technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185–193. https://doi.org/10.1080/10408690490441578
Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications. Journal of Food Science, 68(2), 408–420. https://doi.org/10.1111/j.1365-2621.2003.tb05687.x
Vermeiren, L., Devlieghere, F., VanBeen, M., De Kruijf, N., & Debevere, J. (2000). Development in the Active Packaging of Foods. Journal of Food Technology in Africa, 5(1), 6–13. https://doi.org/10.4314/jfta.v5i1.19249
Bassolé, I. H. N., & Juliani, H. R. (2012). Essential Oils in Combination and Their Antimicrobial Properties. Molecules, 17(4), 3989–4006. https://doi.org/10.3390/molecules17043989
Davidson, P. M., Critzer, F. J., & Taylor, T. M. (2013). Naturally Occurring Antimicrobials for Minimally Processed Foods. Annual Review of Food Science and Technology, 4(1), 163–190. https://doi.org/10.1146/annurev-food-030212-182535
Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: A review. Food Microbiology, 32(1), 1–19. https://doi.org/10.1016/j.fm.2012.04.016