Leptospermum petersonii Bailey Essential Oil as Antagonist against Plant Pathogen Bacteria
Keywords:
disc diffusion method, vapor phase, antimicrobial activity, lemon tea tree essential oilAbstract
Natural ingredients have been used in folk medicine since ancient times. These naturally occurring substances, which can come from plants, are often considered a priori harmless. Certain species of plants called Leptospermum are said to have considerable benefits in traditional medicine. The essential oils of L. scoparium are often used as antibacterial agents. The determination of the antibacterial activity of L. scoparium essential oil against representatives of plant bacteria was the aim of our experiment. The disc diffusion method was used for testing under in vitro conditions and the vapor phase method was used against five different bacteria under in situ conditions. Carrot was used as a model food for in situ. The best antibacterial activity of L. scoparium essential oil against B. subtilis was found using the disc diffusion method. This method was also used to test the antibiotic resistance of the model bacterial species, which was higher than the antibacterial activity of L. scoparium essential oil. L. scoparium essential oil showed the best antibacterial effect against Xanthomonas arboricola at a concentration of 62.5 µg/L in the carrot model. Therefore, it can be concluded that the essential oil has adequate antibacterial capacity and can be used as a suitable natural preservative to prolong the shelf life of carrots.
References
Auddy, B., Ferreira, M., Blasina, F., Lafon, L., Arredondo, F., Dajas, F., Tripathi, P. C., Seal, T., & Mukherjee, B. (2003). Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. Journal of Ethnopharmacology, 84(2–3), 131–138. https://doi.org/10.1016/S0378-8741(02)00322-7
De Sousa Barros, A., De Morais, S. M., Ferreira, P. A. T., Vieira, Í. G. P., Craveiro, A. A., Dos Santos Fontenelle, R. O., De Menezes, J. E. S. A., Da Silva, F. W. F., & De Sousa, H. A. (2015). Chemical composition and functional properties of essential oils from Mentha species. Industrial Crops and Products, 76, 557–564. https://doi.org/10.1016/j.indcrop.2015.07.004
Caputo, L., Cornara, L., Bazzicalupo, M., De Francesco, C., De Feo, V., Trombetta, D., & Smeriglio, A. (2020). Chemical Composition and Biological Activities of Essential Oils from Peels of Three Citrus Species. Molecules, 25(8), 1890. https://doi.org/10.3390/molecules25081890
Lis-Balchin, M., Hart, S. L., & Deans, S. G. (2000). Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytotherapy Research, 14(8), 623–629. https://doi.org/10.1002/1099-1573(200012)14:8<623::AID-PTR763>3.0.CO;2-Z
Lee, B.-H., Annis, P. C., Tumaalii, F., & Choi, W.-S. (2004). Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. Journal of Stored Products Research, 40(5), 553–564. https://doi.org/10.1016/j.jspr.2003.09.001
Park, H.-M., Kim, J., Chang, K.-S., Kim, B.-S., Yang, Y.-J., Kim, G.-H., Shin, S.-C., & Park, I.-K. (2011). Larvicidal Activity of Myrtaceae Essential Oils and Their Components Against Aedes aegypti, Acute Toxicity on Daphnia magna, and Aqueous Residue. Journal of Medical Entomology, 48(2), 405–410. https://doi.org/10.1603/ME10108
Brophy, J. J., Goldsack, R. J., Punruckvong, A., Bean, A. R., Forster, P. I., Lepschi, B. J., Doran, J. C., & Rozefelds, A. C. (2000). Leaf essential oils of the genus Leptospermum (Myrtaceae) in eastern Australia. Part 7. Leptospermum petersonii, L. liversidgei and allies. Flavour and Fragrance Journal, 15(5), 342–351. https://doi.org/10.1002/1099-1026(200009/10)15:5<342::AID-FFJ924>3.0.CO;2-V
Axel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528–3542. https://doi.org/10.1080/10408398.2016.1147417
Demitri, C., De Benedictis, V. M., Madaghiele, M., Corcione, C. E., & Maffezzoli, A. (2016). Nanostructured active chitosan-based films for food packaging applications: Effect of graphene stacks on mechanical properties. Measurement, 90, 418–423. https://doi.org/10.1016/j.measurement.2016.05.012
Jovanovic, G. D., Klaus, A. S., & P. Niksic, M. (2016). Antimicrobial Activity of Chitosan Films With Essential Oils Against Listeria monocytogenes on Cabbage. Jundishapur Journal of Microbiology, 9(9). https://doi.org/10.5812/jjm.34804
Passarinho, A. T. P., Dias, N. F., Camilloto, G. P., Cruz, R. S., Otoni, C. G., Moraes, A. R. F., & Soares, N. D. F. F. (2014). Sliced Bread Preservation through Oregano Essential Oil‐Containing Sachet. Journal of Food Process Engineering, 37(1), 53–62. https://doi.org/10.1111/jfpe.12059
Hyun, J.-E., Bae, Y.-M., Yoon, J.-H., & Lee, S.-Y. (2015). Preservative effectiveness of essential oils in vapor phase combined with modified atmosphere packaging against spoilage bacteria on fresh cabbage. Food Control, 51, 307–313. https://doi.org/10.1016/j.foodcont.2014.11.030
Kumar, U. (2020). Antimicrobial Activity of Essential Oils Against Plant Pathogenic Fungi: A Review. International Journal of Inclusive Development, 6(1). https://doi.org/10.30954/2454-4132.1.2020.7
Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Borotová, P., Štefániková, J., Vukovic, N. L., Vukic, M., Kunová, S., Felsöciová, S., Miklášová, K., Savitskaya, T., & Grinshpan, D. (2021). Chemical composition and biological activity of Salvia officinalis essential oil. Acta Horticulturae et Regiotecturae, 24(2), 81–88. https://doi.org/10.2478/ahr-2021-0028
Harris, R. (2002). Synergism in the essential oil world. International Journal of Aromatherapy, 12(4), 179–186. https://doi.org/10.1016/S0962-4562(02)00083-8
Demuner, A. J., Almeida Barbosa, L. C., Gonçalves Magalhaes, C., Da Silva, C. J., Alvares Maltha, C. R., & Lelis Pinheiro, A. (2011). Seasonal Variation in the Chemical Composition and Antimicrobial Activity of Volatile Oils of Three Species of Leptospermum (Myrtaceae) Grown in Brazil. Molecules, 16(2), 1181–1191. https://doi.org/10.3390/molecules16021181
Kalemba, D., & Kunicka, A. (2003). Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10), 813–829. https://doi.org/10.2174/0929867033457719
Lee, J.-H. (2009). Comparative Analysis of Chemical Compositions and Antimicrobial Activities of Essential Oils from Abies holophylla and Abies koreana. Journal of Microbiology and Biotechnology, 19(4), 372–377. https://doi.org/10.4014/jmb.0811.630
Hood, J. R., Burton, D. M., Wilkinson, J. M., & Cavanagh, H. M. A. (2010). The effect of Leptospermum petersonii essential oil on Candida albicans and Aspergillus fumigatus. Medical Mycology, 48(7), 922–931. https://doi.org/10.3109/13693781003774697
Kim, E., & Park, I.-K. (2012). Fumigant Antifungal Activity of Myrtaceae Essential Oils and Constituents from Leptospermum petersonii against Three Aspergillus Species. Molecules, 17(9), 10459–10469. https://doi.org/10.3390/molecules170910459
Van Vuuren, S. F. (2008). Antimicrobial activity of South African medicinal plants. Journal of Ethnopharmacology, 119(3), 462–472. https://doi.org/10.1016/j.jep.2008.05.038
Kahramanoğlu, İ. (2019). Effects of lemongrass oil application and modified atmosphere packaging on the postharvest life and quality of strawberry fruits. Scientia Horticulturae, 256, 108527. https://doi.org/10.1016/j.scienta.2019.05.054
Martínez, K., Ortiz, M., Albis, A., Gilma Gutiérrez Castañeda, C., Valencia, M., & Grande Tovar, C. (2018). The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules, 8(4), 155. https://doi.org/10.3390/biom8040155
Rahmawati, D., Chandra, M., Santoso, S., & Puteri, M. G. (2017). Application of lemon peel essential oil with edible coating agent to prolong shelf life of tofu and strawberry. 020037. https://doi.org/10.1063/1.4973164
Valdés, A., Burgos, N., Jiménez, A., & Garrigós, M. (2015). Natural Pectin Polysaccharides as Edible Coatings. Coatings, 5(4), 865–886. https://doi.org/10.3390/coatings5040865
Droby, S. (2006). Improving Quality And Safety Of Fresh Fruits And Vegetables After Harvest By The Use Of Biocontrol Agents And Natural Materials. Acta Horticulturae, 709, 45–52. https://doi.org/10.17660/ActaHortic.2006.709.5
Singh, D., & Sharma, R. R. (2018). Postharvest Diseases of Fruits and Vegetables and Their Management. V Postharvest Disinfection of Fruits and Vegetables (s. 1–52). Elsevier. https://doi.org/10.1016/B978-0-12-812698-1.00001-7
Čmiková, N., Galovičová, L., Schwarzová, M., & Kačániová, M. (2023). Use of Mentha spicata essential oil for prolonging postharvest life of fresh vegetables. Acta Horticulturae et Regiotecturae, 26(1), 35–42. https://doi.org/10.2478/ahr-2023-0006
Skrinjar, M., & Nemet, N. (2009). Antimicrobial effects of spices and herbs essential oils. Acta Periodica Technologica, 40, 195–209. https://doi.org/10.2298/APT0940195S
Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2005). The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science & Emerging Technologies, 6(1), 115–123. https://doi.org/10.1016/j.ifset.2004.09.001.