In vitro and in situ Antibacterial Potential of Citrus aurantifolia

Authors

  • Andrea Verešová Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
  • Natália Čmiková Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
  • Miroslava Kačániová Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia

Keywords:

Citrus aurantifolia, in situ, disk diffusion, antimicrobial activity

Abstract

Research on plant sources and screening of plant materials for new compounds has fostered increased interest in replacing synthetic antibacterial agents with natural ones. Spices and their essential oils have had varying degrees of antibacterial activity since antiquity. The need to find new antimicrobials has arisen from the emergence of bacterial resistance to currently marketed antimicrobial compounds. Thus, the aim of this study was to characterize the antibacterial properties of Citrus aurantifolia essential oil against these plant pathogenic bacteria: Bacillus subtilis CCM 2217, Pseudomonas putida CCM 7156, Xanthomonas arboricola CCM 1441, Pectobacterium carotovorum CCM 1008 and Priestia (Bacillus) megaterium CCM 2007. In this experiment, we measured antibacterial activity using two different methods. The antibacterial activity of the investigated bacterial strains was compared and their antibiotic resistance was evaluated using the disc diffusion method under in vitro conditions. The species strategy used on the surface of carrots was the antimicrobial activity under in situ conditions. The essential oil of C. aurantifolia was found to have the strongest antibacterial effect against B. subtilis in vitro. In addition, in situ monitoring of antibacterial activity was carried out and a concentration of 6.25-500 µg/L gave the best results against X. arboricola.

References

Wang, L., Wang, J., Fang, L., Zheng, Z., Zhi, D., Wang, S., Li, S., Ho, C.-T., & Zhao, H. (2014). Anticancer Activities of Citrus Peel Polymethoxyflavones Related to Angiogenesis and Others. BioMed Research International, 2014, 1–10. https://doi.org/10.1155/2014/453972

Mohammed, R. M. O., & Ayoub, S. M. H. (2016). Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia; Seed Extracts. American Journal of Analytical Chemistry, 07(03), 254–259. https://doi.org/10.4236/ajac.2016.73022

Phucharoenrak, P., Muangnoi, C., & Trachootham, D. (2022). A Green Extraction Method to Achieve the Highest Yield of Limonin and Hesperidin from Lime Peel Powder (Citrus aurantifolia). Molecules, 27(3), 820. https://doi.org/10.3390/molecules27030820

Novriyanti, R., Putri, N. E. K., & Rijai, L. (2022). Skrining Fitokimia dan Uji Aktivitas Antioksidan Ekstrak Etanol Kulit Jeruk Nipis (Citrus aurantifolia) Menggunakan Metode DPPH: Phytochemical Screening and Antioxidant Activity Testing Ethanol Extract of Lime Skin (Citrus aurantifolia) Using DPPH Method. Proceeding of Mulawarman Pharmaceuticals Conferences, 15, 165–170. https://doi.org/10.25026/mpc.v15i1.637

Patil, J. R., Chidambara Murthy, K. N., Jayaprakasha, G. K., Chetti, M. B., & Patil, B. S. (2009). Bioactive Compounds from Mexican Lime (Citrus aurantifolia) Juice Induce Apoptosis in Human Pancreatic Cells. Journal of Agricultural and Food Chemistry, 57(22), 10933–10942. https://doi.org/10.1021/jf901718u

Ouattara-Soro Fatou Shchérazade, Acray-Zengbe Pétronille, Febry Kobenan Yéboua Joseph, & Abizi Georges. (2021). Study of the analgesic effect of the aqueous extract of the leaves of Citrus aurantifolia (Rutaceae) in mice. GSC Biological and Pharmaceutical Sciences, 14(03), 207–214. https://doi.org/10.30574/gscbps.2021.14.3.0072

Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., Kowalczewski, P. Ł., Bakay, L., & Kačániová, M. (2022). The Potential Use of Citrus aurantifolia L. Essential Oils for Decay Control, Quality Preservation of Agricultural Products, and Anti-Insect Activity. Agronomy, 12(3), 735. https://doi.org/10.3390/agronomy12030735

Nafisa, S., Swandiny, G. F., Gangga, E., & Zaenudin, Y. A. (2022). Antimicrobial Activity and Phytochemical Screening of Citrus aurantifolia Leaves Ethanolic Extract. Journal Ilmu Kefarmasian Indonesia, 19(2), 287. https://doi.org/10.35814/jifi.v19i2.1095

Kazeem, M. I., Bankole, H. A., Oladokun, T. I., Bello, A. O., & Maliki, M. A. (2020). Citrus aurantifolia (Christm.) Swingle (lime) Fruit Extract Inhibits the Activities of Polyol Pathway Enzymes. eFood, 1(4), 310–315. https://doi.org/10.2991/efood.k.200824.001

Ramadaini, K., Azizah, Z., . Z., & Rivai, H. (2020). Overview of Pharmacology and Product Development of Lime (Citrus aurantifolia) Rind. International Journal of Pharmaceutical Sciences and Medicine, 5(12), 35–45. https://doi.org/10.47760/ijpsm.2020.v05i12.007

Loizzo, M. R., Tundis, R., Bonesi, M., Menichini, F., De Luca, D., Colica, C., & Menichini, F. (2012). Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti‐cholinesterase activities. Journal of the Science of Food and Agriculture, 92(15), 2960–2967. https://doi.org/10.1002/jsfa.5708

Shahidi, F., & Zhong, Y. (2010). Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology, 112(9), 930–940. https://doi.org/10.1002/ejlt.201000044

Aziz, M., & Karboune, S. (2016). Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 1–26. https://doi.org/10.1080/10408398.2016.1194256

Ahmad, S. R., Gokulakrishnan, P., Giriprasad, R., & Yatoo, M. A. (2015). Fruit-based Natural Antioxidants in Meat and Meat Products: A Review. Critical Reviews in Food Science and Nutrition, 55(11), 1503–1513. https://doi.org/10.1080/10408398.2012.701674

Lucera, A., Costa, C., Conte, A., & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00287

Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Borotová, P., Štefániková, J., Vukovic, N. L., Vukic, M., Kunová, S., Felsöciová, S., Miklášová, K., Savitskaya, T., & Grinshpan, D. (2021). Chemical composition and biological activity of Salvia officinalis essential oil. Acta Horticulturae et Regiotecturae, 24(2), 81–88. https://doi.org/10.2478/ahr-2021-0028

Rodrigues, A., Sandström, A., Cá, T., Steinsland, H., Jensen, H., & Aaby, P. (2000). Protection from cholera by adding lime juice to food – results from community and laboratory studies in Guinea‐Bissau, West Africa. Tropical Medicine & International Health, 5(6), 418–422. https://doi.org/10.1046/j.1365-3156.2000.00575.x

Onyeagba, R. A., Ugbogu, O. C., Okeke, C. U., & Iroakasi, .O. (2004). Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn). African Journal of Biotechnology, 3(10), 552–554. https://doi.org/10.5897/AJB2004.000-2108

Julaeha, E., Puspita, S., Eddy, D. R., Wahyudi, T., Nurzaman, M., Nugraha, J., Herlina, T., & Al Anshori, J. (2021). Microencapsulation of lime (Citrus aurantifolia) oil for antibacterial finishing of cotton fabric. RSC Advances, 11(3), 1743–1749. https://doi.org/10.1039/D0RA09314A

Al-Aamri, M. S., Al-Abousi, N. M., Al-Jabri, S. S., Alam, T., & Khan, S. A. (2018). Chemical composition and in-vitro antioxidant and antimicrobial activity of the essential oil of Citrus aurantifolia L. leaves grown in Eastern Oman. Journal of Taibah University Medical Sciences, 13(2), 108–112. https://doi.org/10.1016/j.jtumed.2017.12.002

Chi, P. T. L., Van Hung, P., Le Thanh, H., & Phi, N. T. L. (2020). Valorization of Citrus Leaves: Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oils. Waste and Biomass Valorization, 11(9), 4849–4857. https://doi.org/10.1007/s12649-019-00815-6

Bnina, E. B., Hajlaoui, H., Chaieb, I., Daami-Remadi, M., Said, M. B., & Jannet, H. B. (2019). Chemical composition, antimicrobial and insecticidal activities of the tunisian Citrus aurantium essential oils. Czech Journal of Food Sciences, 37(2), 81–92. https://doi.org/10.17221/202/2017-CJFS

Fisher, K., & Phillips, C. A. (2006). The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. Journal of Applied Microbiology, 101(6), 1232–1240. https://doi.org/10.1111/j.1365-2672.2006.03035.x

Kasaai, M. R., & Moosavi, A. (2017). Treatment of Kraft paper with citrus wastes for food packaging applications: Water and oxygen barrier properties improvement. Food Packaging and Shelf Life, 12, 59–65. https://doi.org/10.1016/j.fpsl.2017.02.006

Simas, D. L. R., De Amorim, S. H. B. M., Goulart, F. R. V., Alviano, C. S., Alviano, D. S., & Da Silva, A. J. R. (2017). Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. Industrial Crops and Products, 98, 108–115. https://doi.org/10.1016/j.indcrop.2017.01.026

Tyagi, A. K., Gottardi, D., Malik, A., & Guerzoni, M. E. (2014). Chemical composition, in vitro anti-yeast activity and fruit juice preservation potential of lemon grass oil. LWT - Food Science and Technology, 57(2), 731–737. https://doi.org/10.1016/j.lwt.2014.02.004

Downloads

Published

2024-05-30