Frontiers of Genetic Engineering: Cutting-Edge Genome Editing for Silkworms and Honeybees

Authors

  • Alexandru-Ioan Giurgiu University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania, Department of Beekeeping and Sericulture
  • Gabriela-Maria Baci University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania, Department of Beekeeping and Sericulture
  • Tudor Nicolas Ternar University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania, Department of Beekeeping and Sericulture
  • Daniela Ecatrina Baciu University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania, Department of Beekeeping and Sericulture
  • Severus Daniel Dezmirean University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania, Department of Beekeeping and Sericulture

Keywords:

biotechnological innovations, honeybees, medicine, silkworms

Abstract

Nowadays, entomology is one of the most studied domains due to the pivotal role of insects in ecology, agriculture, the pharmaceutical industry, and medicine. Insects are the most diverse and numerous group of species, and their impact represents a high interest for the scientific community. Due to their well-documented high applicability in various areas, two of the most studied insects are silkworms and honeybees. One of the most important roles of silkworms is their role in medicine and the pharmaceutic industry as bioreactors and model organisms. Honeybees represent the main pollinator for numerous crops and wild plants and present a major contribution to the food chain. Despite their beneficial role in nature and the numerous products obtained from the hive, the bees face several stressors, both biotic and abiotic. The most important progress in this direction has been made by applying genome editing tools to enhance their productivity and agricultural sustainability. Until now, researchers have obtained disease-resistant individuals, limiting the high need for chemical treatments and promoting environmental health. These advancements exhibit progress in biotechnological innovations, including the production of innovative biomaterials for medical applications, underscoring the broad impact of these techniques on the economy, ecology, and medicine.

References

Benedict, M. Q., & Scott, M. J. (2022). Transgenic Insects, 2nd Edition. CABI. ,Alison McAfee, Judy Li, Marianne Otte, Honey Bee genome edditing, 359-374, CABI.http://books.google.ie/books?id=_VacEAAAQBAJ&pg=PA359&dq=doi.org/10.1079/9781800621176.0018&hl=&cd=1&source=gbs_api

Toth, A. L., & Zayed, A. (2021), The honey bee genome-- what has it been good for? Apidologie, 52(1), 45–62. https://doi.org/10.1007/s13592-020-00829-3

Li, F., Zhao, X., Li, M., He, K., Huang, C., Zhou, Y., Li, Z., & Walters, J. R. (2019), Insect genomes: progress and challenges. Insect Molecular Biology, 28(6), 739–758. https://doi.org/10.1111/imb.12599

Fritz, M. L. (2022). Utility and challenges of using whole‐genome resequencing to detect emerging insect and mite resistance in agroecosystems. Evolutionary Applications, 15(10), 1505–1520. https://doi.org/10.1111/eva.13484

Meng, X., Zhu, F., Chen, K., (2017). Silkworm: A promising model organism in life science. Journal of Insect Science, ,17(5). , doi: 10.1093/jisesa/iex064

Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T. The genome sequence of silkworm, Bombyx mori. DNA Res. 2004 Feb 29;11(1):27-35. doi: 10.1093/dnares/11.1.27.

Hamamoto, H., Tonoike, A., Narushima, K., Horie, R., & Sekimizu, K. (2009). Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149(3), 334–339. https://doi.org/10.1016/j.cbpc.2008.08.008

Umuhoza, D., Yang, F., Long, D., Hao, Z., Dai, J., & Zhao, A. (2020). Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomaterials Science & Engineering, 6(3), 1290–1310. https://doi.org/10.1021/acsbiomaterials.9b01781

Balachander, G. M., Kotcherlakota, R., Nayak, B., Kedaria, D., Rangarajan, A., & Chatterjee, K. (2021). 3D Tumor Models for Breast Cancer: Whither We Are and What We Need. ACS Biomaterials Science & Engineering, 7(8), 3470–3486. https://doi.org/10.1021/acsbiomaterials.1c00230

Wang, Y., Wang, F., Xu, S., Wang, R., Chen, W., Hou, K., Tian, C., Wang, F., Yu, L., Lu, Z., Zhao, P., & Xia, Q. (2019). Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomaterialia, 86, 148–157. https://doi.org/10.1016/j.actbio.2018.12.036

Bahcecioglu, G., Basara, G., Ellis, B. W., Ren, X., & Zorlutuna, P. (2020). Breast cancer models: Engineering the tumor microenvironment. Acta Biomaterialia, 106, 1–21. https://doi.org/10.1016/j.actbio.2020.02.006

Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., AlAjmi, M. F., Zhao, C., Masry, S. H. D., Abdel-Daim, M. M., Halabi, M. F., Kai, G., Al Naggar, Y., Bishr, M., Diab, M. A. M., & El-Seedi, H. R. (2021). Overview of Bee Pollination and Its Economic Value for Crop Production. Insects, 12(8), 688. https://doi.org/10.3390/insects12080688

El-Seedi, H. R., Eid, N., Abd El-Wahed, A. A., Rateb, M. E., Afifi, H. S., Algethami, A. F., Zhao, C., Al Naggar, Y., Alsharif, S. M., Tahir, H. E., Xu, B., Wang, K., & Khalifa, S. A. M. (2022). Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.761267

Seeley, T. D. (1989). The Honey Bee Colony as a Superorganism. American Scientist, 77(6), 546–553. http://www.jstor.org/stable/27856005

Moritz, R. F., & Fuchs, S. (1998). Organization of honeybee colonies: characteristics and consequences of a superorganism concept. Apidologie, 29(1–2), 7–21. https://doi.org/10.1051/apido:19980101

Canciani, M., Arnellos, A., & Moreno, A. (2019). Revising the Superorganism: An Organizational Approach to Complex Eusociality. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02653

Chandrasekaran, A. P., Song, M., Kim, K. S., & Ramakrishna, S. (2018). Different Methods of Delivering CRISPR/Cas9 Into Cells. Progress in Molecular Biology and Translational Science, 157–176. https://doi.org/10.1016/bs.pmbts.2018.05.001

Cong Gan, W., & P.K. Ling, A. (2022). CRISPR/Cas9 in plant biotechnology: applications and challenges. BioTechnologia, 103(1), 81–93. https://doi.org/10.5114/bta.2022.113919

Iordache, D., Baci, G. M., Căpriță, O., Farkas, A., Lup, A., & Butiuc-Keul, A. (2022). Correlation between CRISPR Loci Diversity in Three Enterobacterial Taxa. International Journal of Molecular Sciences, 23(21), 12766. https://doi.org/10.3390/ijms232112766

Vestergaard, G., Garrett, R. A., & Shah, S. A. (2014). CRISPR adaptive immune systems of Archaea. RNA Biology, 11(2), 156–167. https://doi.org/10.4161/rna.27990

Sun, D., Guo, Z., Liu, Y., & Zhang, Y. (2017). Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00608

Manghwar, H., Lindsey, K., Zhang, X., & Jin, S. (2019). CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in Plant Science, 24(12), 1102–1125. https://doi.org/10.1016/j.tplants.2019.09.006

Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J. K., & Carroll, D. (2006). Efficient Gene Targeting in Drosophila With Zinc-Finger Nucleases. Genetics, 172(4), 2391–2403. https://doi.org/10.1534/genetics.105.052829

Wang, Y., Tan, A., Xu, J., Li, Z., Zeng, B., Ling, L., You, L., Chen, Y., James, A. A., & Huang, Y. (2014). Site-specific, TALENs-mediated transformation of Bombyx mori. Insect Biochemistry and Molecular Biology, 55, 26–30. https://doi.org/10.1016/j.ibmb.2014.10.00

Takasu, Y., Kobayashi, I., Beumer, K., Uchino, K., Sezutsu, H., Sajwan, S., Carroll, D., Tamura, T., & Zurovec, M. (2010). Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochemistry and Molecular Biology, 40(10), 759–765. https://doi.org/10.1016/j.ibmb.2010.07.012

Takasu, Y., Kobayashi, I., Beumer, K., Uchino, K., Sezutsu, H., Sajwan, S., Carroll, D., Tamura, T., & Zurovec, M. (2010). Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochemistry and Molecular Biology, 40(10), 759–765. https://doi.org/10.1016/j.ibmb.2010.07.012

Ma, S., Shi, R., Wang, X., Liu, Y., Chang, J., Gao, J., Lu, W., Zhang, J., Zhao, P., & Xia, Q. (2014). Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor. Scientific Reports, 4(1). https://doi.org/10.1038/srep06867

Tomihara, K., & Kiuchi, T. (2023). Disruption of a BTB-ZF transcription factor causes female sterility and melanization in the larval body of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 159, 103982. https://doi.org/10.1016/j.ibmb.2023.103982

Zhu, L., Mon, H., Xu, J., Lee, J. M., & Kusakabe, T. (2015). CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Scientific Reports, 5(1). https://doi.org/10.1038/srep18103

Homma, Y., Toga, K., Daimon, T., Shinoda, T., & Togawa, T. (2020). A mitochondrial phosphatase PTPMT1 is essential for the early development of silkworm, Bombyx mori. Biochemical and Biophysical Research Communications, 530(4), 713–718. https://doi.org/10.1016/j.bbrc.2020.07.124

Yu, Y., Chen, K., Wang, J., Zhang, Z., Hu, B., Liu, X., Lin, Z., & Tan, A. (2024). Custom-designed, mass silk production in genetically engineered silkworms. PNAS Nexus, 3(4). https://doi.org/10.1093/pnasnexus/pgae128

Wang, Y., & Nakagaki, M. (2014). Editing of the heavy chain gene of Bombyx mori using transcription activator like effector nucleases. Biochemical and Biophysical Research Communications, 450(1), 184–188. https://doi.org/10.1016/j.bbrc.2014.05.092

Zhang, X., Dong, Z., Guo, K., Jiang, W., Wu, X., Duan, J., Jing, X., Xia, Q., & Zhao, P. (2023). Identification and functional study of fhx-L1, a major silk component in Bombyx mori. International Journal of Biological Macromolecules, 232, 123371. https://doi.org/10.1016/j.ijbiomac.2023.123371

Xu, J., Zhan, S., Chen, S., Zeng, B., Li, Z., James, A. A., Tan, A., & Huang, Y. (2017). Sexually dimorphic traits in the silkworm, Bombyx mori, are regulated by doublesex. Insect Biochemistry and Molecular Biology, 80, 42–51. https://doi.org/10.1016/j.ibmb.2016.11.005

Wu, X., Kriz, A. J., & Sharp, P. A. (2014). Target specificity of the CRISPR‐Cas9 system. Quantitative Biology, 2(2), 59–70. https://doi.org/10.1007/s40484-014-0030-x

Westra, E. R., Buckling, A., & Fineran, P. C. (2014). CRISPR–Cas systems: beyond adaptive immunity. Nature Reviews Microbiology, 12(5), 317–326. https://doi.org/10.1038/nrmicro3241

Koonin, E. V., & Makarova, K. S. (2019). Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1772), 20180087. https://doi.org/10.1098/rstb.2018.0087

Rath, D., Amlinger, L., Rath, A., & Lundgren, M. (2015). The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 117, 119–128. https://doi.org/10.1016/j.biochi.2015.03.025

Guo, H., Chen, F., Zhou, M., Lan, W., Zhang, W., Shen, G., Lin, P., Xia, Q., Zhao, P., & Li, Z. (2023). CRISPR-Cas9-Mediated Mutation of Methyltransferase METTL4 Results in Embryonic Defects in Silkworm Bombyx mori. International Journal of Molecular Sciences, 24(4), 3468. https://doi.org/10.3390/ijms24043468

Wang, W., Ye, C., Liu, J., Zhang, D., Kimata, J. T., & Zhou, P. (2014). CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection. PLoS ONE, 9(12), e115987. https://doi.org/10.1371/journal.pone.0115987

Wang, W., Zhang, F., Guo, K., Xu, J., Zhao, P., & Xia, Q. (2023). CRISPR/Cas9-mediated gene editing of the let-7 seed sequence improves silk yield in the silkworm, Bombyx mori. International Journal of Biological Macromolecules, 243, 124793. https://doi.org/10.1016/j.ijbiomac.2023.124793

Tomihara, K., & Kiuchi, T. (2023). Disruption of a BTB-ZF transcription factor causes female sterility and melanization in the larval body of the silkworm,Bombyx mori. https://doi.org/10.1101/2023.04.01.535244

Tomihara, K., & Kiuchi, T. (2023). Disruption of a BTB-ZF transcription factor causes female sterility and melanization in the larval body of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 159, 103982. https://doi.org/10.1016/j.ibmb.2023.103982

Ueno, M., Nakata, M., Kaneko, Y., Iwami, M., Takayanagi-Kiya, S., & Kiya, T. (2023). fruitless is sex-differentially spliced and is important for the courtship behavior and development of silkmoth Bombyx mori. Insect Biochemistry and Molecular Biology, 159, 103989. https://doi.org/10.1016/j.ibmb.2023.103989

Tobita, H., & Kiuchi, T. (2022). Knockouts of positive and negative elements of the circadian clock disrupt photoperiodic diapause induction in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 149, 103842. https://doi.org/10.1016/j.ibmb.2022.103842

Wang, Y., Zhou, L., Liang, W., Dang, Z., Wang, S., Zhang, Y., Zhao, P., & Lu, Z. (2022). Cytokine receptor DOME controls wing disc development in Bombyx mori. Insect Biochemistry and Molecular Biology, 148, 103828. https://doi.org/10.1016/j.ibmb.2022.103828

Zeng, B., Huang, Y., Xu, J., Shiotsuki, T., Bai, H., Palli, S. R., Huang, Y., & Tan, A. (2017). The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori. Journal of Biological Chemistry, 292(28), 11659–11669. https://doi.org/10.1074/jbc.m117.777797

Suzuki, T., Tang, S., Otuka, H., Ito, K., & Sato, R. (2022). Nodule formation in Bombyx mori larvae is regulated by BmToll10-3. Journal of Insect Physiology, 142, 104441. https://doi.org/10.1016/j.jinsphys.2022.104441

Xu, X., Zhang, Z., Yang, Y., Huang, S., Li, K., He, L., & Zhou, X. (2018). Genome editing reveals the function of Yorkie during the embryonic and early larval development in silkworm, Bombyx mori. Insect Molecular Biology, 27(6), 675–685. https://doi.org/10.1111/imb.12502

Ye, Z., Zhang, P., Gai, T., Lou, J., Dai, F., & Tong, X. (2021). Sob gene is critical to wing development in Bombyx mori and Tribolium castaneum. Insect Science, 29(1), 65–77. https://doi.org/10.1111/1744-7917.12911

Chen, A., Liao, P., Li, Q., Zhao, Q., Gao, M., Wang, P., Liu, Z., Meng, G., Dong, Z., & Liu, M. (2021). phytanoyl-CoA dioxygenase domain-containing protein 1 plays an important role in egg shell formation of silkworm (Bombyx mori). PLOS ONE, 16(12), e0261918. https://doi.org/10.1371/journal.pone.0261918

Mei, X., Huang, T., Chen, A., Liu, W., Jiang, L., Zhong, S., Shen, D., Qiao, P., & Zhao, Q. (2024). BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1298869

Li, S., Lao, J., Sun, Y., Hua, X., Lin, P., Wang, F., Shen, G., Zhao, P., & Xia, Q. (2024). CRISPR/Cas9-Mediated Editing of BmEcKL1 Gene Sequence Affected Silk Gland Development of Silkworms (Bombyx mori). International Journal of Molecular Sciences, 25(3), 1907. https://doi.org/10.3390/ijms25031907

Cao, J., Zheng, H., Zhang, R., Xu, Y., Pan, H., Li, S., Liu, C., & Cheng, T. (2022). Dimmed gene knockout shortens larval growth and reduces silk yield in the silkworm, Bombyx mori. Insect Molecular Biology, 32(1), 26–35. https://doi.org/10.1111/imb.12810

Feng, Y. T., Yang, C. Y., Wu, L., Wang, Y. C., Shen, G. W., & Lin, P. (2024). BmSPP is a virus resistance gene in Bombyx mori. Frontiers in Immunology, 15. https://doi.org/10.3389/fimmu.2024.1377270

Kohno, H., Suenami, S., Takeuchi, H., Sasaki, T., & Kubo, T. (2016). Production of Knockout Mutants by CRISPR/Cas9 in the European Honeybee, Apis mellifera L. Zoological Science, 33(5), 505. https://doi.org/10.2108/zs160043

Kohno, H., & Kubo, T. (2018). mKast is dispensable for normal development and sexual maturation of the male European honeybee. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30380-2

Kohno, H., & Kubo, T. (2019). Genetics in the Honey Bee:.Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. Insects, 10(10), 348. https://doi.org/10.3390/insects10100348

Hu, X. F., Zhang, B., Liao, C. H., & Zeng, Z. J. (2019). High-Efficiency CRISPR/Cas9-Mediated Gene Editing in Honeybee (Apis mellifera) Embryos. G3 Genes|Genomes|Genetics, 9(5), 1759–1766. https://doi.org/10.1534/g3.119.400130

Değirmenci, L., Geiger, D., Rogé Ferreira, F. L., Keller, A., Krischke, B., Beye, M., Steffan-Dewenter, I., & Scheiner, R. (2020). CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees. Chemical Senses, 45(8), 655–666. https://doi.org/10.1093/chemse/bjaa06

Jung, J. W., Park, K. W., Ahn, Y. J., & Kwon, H. W. (2015). Functional characterization of sugar receptors in the western honeybee, Apis mellifera. Journal of Asia-Pacific Entomology, 18(1), 19–26. https://doi.org/10.1016/j.aspen.2014.10.011

Simcock, N. K., Wakeling, L. A., Ford, D., & Wright, G. A. (2017). Effects of age and nutritional state on the expression of gustatory receptors in the honeybee (Apis mellifera). PLOS ONE, 12(4), e0175158. https://doi.org/10.1371/journal.pone.0175158

Değirmenci, L., Rogé Ferreira, F. L., Vukosavljevic, A., Heindl, C., Keller, A., Geiger, D., & Scheiner, R. (2023). Sugar perception in honeybees. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.1089669

Nie, H. Y., Liang, L. Q., Li, Q. F., Li, Z. H. Q., Zhu, Y. N., Guo, Y. K., Zheng, Q. L., Lin, Y., Yang, D. L., Li, Z. G., & Su, S. K. (2021). CRISPR/Cas9 mediated knockout of Amyellow-y gene results in melanization defect of the cuticle in adult Apis mellifera. Journal of Insect Physiology, 132, 104264. https://doi.org/10.1016/j.jinsphys.2021.104264

Elias-Neto, M., Soares, M. P., Simões, Z. L., Hartfelder, K., & Bitondi, M. M. (2010). Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). Insect Biochemistry and Molecular Biology, 40(3), 241–251. https://doi.org/10.1016/j.ibmb.2010.02.004

Roth, A., Vleurinck, C., Netschitailo, O., Bauer, V., Otte, M., Kaftanoglu, O., Page, R. E., & Beye, M. (2019). A genetic switch for worker nutrition-mediated traits in honeybees. PLOS Biology, 17(3), e3000171. https://doi.org/10.1371/journal.pbio.3000171

Netschitailo, O., Wang, Y., Wagner, A., Sommer, V., Verhulst, E. C., & Beye, M. (2023). The function and evolution of a genetic switch controlling sexually dimorphic eye differentiation in honeybees. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36153-4

Bozek, K., Hebert, L., Portugal, Y., Mikheyev, A. S., & Stephens, G. J. (2021). Markerless tracking of an entire honey bee colony. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21769-1

Downloads

Published

2024-05-30