Citrus nobilis as Antimicrobial Agent against Plant Bacterial Pathogens
Keywords:
Citrus nobilis, essential oil, vapor phase, antimicrobial activityAbstract
Citrus essential oils (EOs) are used industrially in a wide range of products such as food and beverages, cosmetics and medicines. They are also used to combat some of the most important plant and food diseases. Citrus EOs are mostly found in fruit peels, which makes their extraction economically viable as fruit peels are wasted in the production of fruit juices. The aim of this study was to evaluate EO from Citrus nobilis, which was extracted by cold pressing of unripe pericarp, in terms of their ability to suppress the most prevalent plant diseases. The disc diffusion method was used to determine the antibacterial activity against plant diseases under in vitro conditions. It was found that the lowest concentration of EO had the best antibacterial effect against Bacillus subtilis in the vapor phase on the carrot model. The results of our experiments showed that C. nobilis EO had moderate antimicrobial activity.
References
Ju, J. (2023). Essential Oils as Antimicrobial Agents in Food Preservation (1st.). CRC Press. https://doi.org/10.1201/9781003329268
A, O., Y, T. A. kaki, S, B., S, A., A, G. D., & M, R. D. (2013). Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African Journal of Microbiology Research, 7(42), 4968–4973. https://doi.org/10.5897/AJMR2012.2390
Irshad, M., Ali Subhani, M., Ali, S., & Hussain, A. (2020). Biological Importance of Essential Oils. V H. A. El-Shemy (Ed.), Essential Oils—Oils of Nature. IntechOpen. https://doi.org/10.5772/intechopen.87198
Kumar Yadav, S. (2022). Physiochemical Properties of Essential Oils and Applications. V M. Santana De Oliveira & E. Helena De Aguiar Andrade (Ed.), Biochemistry (Roč. 32). IntechOpen. https://doi.org/10.5772/intechopen.104112
Bektašević, M., & Politeo, O. (2022). Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes. V M. Santana De Oliveira & E. Helena De Aguiar Andrade (Ed.), Biochemistry (Roč. 32). IntechOpen. https://doi.org/10.5772/intechopen.102874
Commissioner, O. of the. (2024, august 4). U.S. Food and Drug Administration. FDA; FDA. https://www.fda.gov/
Nannapaneni, R., Chalova, V., Crandall, P., Ricke, S., Johnson, M., & Obryan, C. (2009). Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. International Journal of Food Microbiology, 129(1), 43–49. https://doi.org/10.1016/j.ijfoodmicro.2008.11.008
Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends in Food Science & Technology, 19(3), 156–164. https://doi.org/10.1016/j.tifs.2007.11.006
Borgmann, S., Niklas, D. M., Klare, I., Zabel, L. T., Buchenau, P., Autenrieth, I. B., & Heeg, P. (2004). Two episodes of vancomycin-resistant Enterococcus faecium outbreaks caused by two genetically different clones in a newborn intensive care unit. International Journal of Hygiene and Environmental Health, 207(4), 386–389. https://doi.org/10.1078/1438-4639-00304
Flamini, G., Tebano, M., & Cioni, P. L. (2007). Volatiles emission patterns of different plant organs and pollen of Citrus limon. Analytica Chimica Acta, 589(1), 120–124. https://doi.org/10.1016/j.aca.2007.02.053
Smith, D. C., Forland, S., Bachanos, E., Matejka, M., & Barrett, V. (2001). Qualitative Analysis of Citrus Fruit Extracts by GC/MS: An Undergraduate Experiment. The Chemical Educator, 6(1), 28–31. https://doi.org/10.1007/s00897000450a
Svoboda, K. (2003). Lemon scented plants. International Journal of Aromatherapy, 13(1), 23–32. https://doi.org/10.1016/S0962-4562(03)00048-1
Bozinou, E., Athanasiadis, V., Chatzimitakos, T., Ganos, C., Gortzi, O., Diamantopoulou, P., Papanikolaou, S., Chinou, I., & Lalas, S. I. (2023). Essential Oil of Greek Citrus sinensis cv New Hall - Citrus aurantium Pericarp: Effect upon Cellular Lipid Composition and Growth of Saccharomyces cerevisiae and Antimicrobial Activity against Bacteria, Fungi, and Human Pathogenic Microorganisms. Processes, 11(2), 394. https://doi.org/10.3390/pr11020394
Ruberto, G. (2002). Analysis of Volatile Components of Citrus Fruit Essential Oils. V J. F. Jackson & H. F. Linskens (Ed.), Analysis of Taste and Aroma (s. 123–157). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04857-3_7
Değirmenci, H., & Erkurt, H. (2020). Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. Journal of Infection and Public Health, 13(1), 58–67. https://doi.org/10.1016/j.jiph.2019.06.017
Oukil, N., Hamri, S., & Bedjou, F. (2023). Antimicrobial Effects of Combinations between Essential Oils, Antibiotics, and Major Components of Essential Oils. Phytothérapie, 21(1), 10–18. https://doi.org/10.3166/phyto-2022-0317
Tao, N., Jia, L., & Zhou, H. (2014). Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chemistry, 153, 265–271. https://doi.org/10.1016/j.foodchem.2013.12.070
Yigit, F., Özcan, M., & Akgül, A. (2000). Inhibitory effect of some spice essential oils on Penicillium digitatum causing postharvest rot in citrus. Grasas y Aceites, 51(4), 237–240. https://doi.org/10.3989/gya.2000.v51.i4.417
Kim, S. A., Kim, N. H., Lee, S. H., Hwang, I. G., & Rhee, M. S. (2014). Survival of Foodborne Pathogenic Bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus Spores in Fermented Alcoholic Beverages (Beer and Refined Rice Wine). Journal of Food Protection, 77(3), 419–426. https://doi.org/10.4315/0362-028X.JFP-13-234
Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18(5), 414–420. https://doi.org/10.1016/j.foodcont.2005.11.009
Jurči, P. (2019). Vacuum Heat Treatment: Conference on Vacuum Heat Treatment and Heat Treatment of Tools 2018 (Roč. 395). Trans Tech Publications Ltd. https://doi.org/10.4028/b-Ss2pVy
Roohinejad, S., Koubaa, M., Sant’Ana, A. S., & Greiner, R. (2018). Mechanisms of Microbial Inactivation by Emerging Technologies. V Innovative Technologies for Food Preservation (s. 111–132). Elsevier. https://doi.org/10.1016/B978-0-12-811031-7.00004-2
Alzamora, S. M., Welti-Chanes, J., Guerrero, S. N., & Gómez, P. L. (2012). Rational Use of Novel Technologies: A Comparative Analysis of the Performance of Several New Food Preservation Technologies for Microbial Inactivation. V A. McElhatton & P. J. Do Amaral Sobral (Ed.), Novel Technologies in Food Science (s. 235–260). Springer New York. https://doi.org/10.1007/978-1-4419-7880-6_11
Espina, L., Somolinos, M., Lorán, S., Conchello, P., García, D., & Pagán, R. (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 22(6), 896–902. https://doi.org/10.1016/j.foodcont.2010.11.021
Kačániová, M., Galovičová, L., Valková, V., Ďuranová, H., Borotová, P., Štefániková, J., Vukovic, N. L., Vukic, M., Kunová, S., Felsöciová, S., Miklášová, K., Savitskaya, T., & Grinshpan, D. (2021). Chemical composition and biological activity of Salvia officinalis essential oil. Acta Horticulturae et Regiotecturae, 24(2), 81–88. https://doi.org/10.2478/ahr-2021-0028
Jaradat, N., Qadi, M., Abualhasan, M. N., Al-lahham, S., Al-Rimawi, F., Hattab, S., Hussein, F., Zakarneh, D., Hamad, I., Sulayman, I., Issa, L., & Mousa, A. (2020). Carbohydrates and lipids metabolic enzymes inhibitory, antioxidant, antimicrobial and cytotoxic potentials of Anchusa ovata Lehm. From Palestine. European Journal of Integrative Medicine, 34, 101066. https://doi.org/10.1016/j.eujim.2020.101066
Jaradat, N., Qneibi, M., Hawash, M., Al-Maharik, N., Qadi, M., Abualhasan, M. N., Ayesh, O., Bsharat, J., Khadir, M., Morshed, R., Yaaqbeh, S., Marei, S., Hamayel, S., Mousa, A., Daqqa, M., & Bdir, S. (2022). Assessing Artemisia arborescens essential oil compositions, antimicrobial, cytotoxic, anti-inflammatory, and neuroprotective effects gathered from two geographic locations in Palestine. Industrial Crops and Products, 176, 114360. https://doi.org/10.1016/j.indcrop.2021.114360
Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines, 4(3), 58. https://doi.org/10.3390/medicines4030058
Herman, A., Herman, A. P., Domagalska, B. W., & Młynarczyk, A. (2013). Essential Oils and Herbal Extracts as Antimicrobial Agents in Cosmetic Emulsion. Indian Journal of Microbiology, 53(2), 232–237. https://doi.org/10.1007/s12088-012-0329-0
Reda, F. M., El-Zawahry, Y., & Omar, A. (2017). Synergistic Effect of Combined Antibiotic and Methanol Extract of Eucalyptus camaldulensis leaf Against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Applied Sciences and Biotechnology, 5(4), 486–497. https://doi.org/10.3126/ijasbt.v5i4.18620
Aleksic, V., Mimica-Dukic, N., Simin, N., Nedeljkovic, N. S., & Knezevic, P. (2014). Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine, 21(12), 1666–1674. https://doi.org/10.1016/j.phymed.2014.08.013
El Ghaouth, A., Wilson, C., & Wisniewski, M. (2004). Biologically-Based Alternatives to Synthetic Fungicides for the Control of Postharvest diseases of Fruit and Vegetables. V S. A. M. H. Naqvi (Ed.), Diseases of Fruits and Vegetables: Volume II (s. 511–535). Springer Netherlands. https://doi.org/10.1007/1-4020-2607-2_14
Singh, D., & Sharma, R. R. (2018). Postharvest Diseases of Fruits and Vegetables and Their Management. V Postharvest Disinfection of Fruits and Vegetables (s. 1–52). Elsevier. https://doi.org/10.1016/B978-0-12-812698-1.00001-7
Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273–292. https://doi.org/10.1016/j.fm.2004.08.006
Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual review of phytopathology, 40(1), 411–441.
Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32(3), 235–245. https://doi.org/10.1016/j.postharvbio.2003.11.005
López, P., Sánchez, C., Batlle, R., & Nerín, C. (2005). Solid- and Vapor-Phase Antimicrobial Activities of Six Essential Oils: Susceptibility of Selected Foodborne Bacterial and Fungal Strains. Journal of Agricultural and Food Chemistry, 53(17), 6939–6946. https://doi.org/10.1021/jf050709v
Suhr, K. I., & Nielsen, P. V. (2003). Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. Journal of Applied Microbiology, 94(4), 665–674. https://doi.org/10.1046/j.1365-2672.2003.01896.x
Weissinger, W. R., Mcwatters, K. H., & Beuchat, L. R. (2001). Evaluation of Volatile Chemical Treatments for Lethality to Salmonella on Alfalfa Seeds and Sprouts. Journal of Food Protection, 64(4), 442–450. https://doi.org/10.4315/0362-028X-64.4.442
Lamikanra, O., & Richard, O. A. (2002). Effect of Storage on Some Volatile Aroma Compounds in Fresh-Cut Cantaloupe Melon. Journal of Agricultural and Food Chemistry, 50(14), 4043–4047. https://doi.org/10.1021/jf011470v
Hammad, A., Abd-El-kalek, H., Abd-El-kader, R., & Youssef, K. (2012). Microbiological nutritional and sensorial changes in fresh carrot juice preserved by irradiation.
Buta, J. G., Moline, H. E., Spaulding, D. W., & Wang, C. Y. (1999). Extending Storage Life of Fresh-Cut Apples Using Natural Products and Their Derivatives. Journal of Agricultural and Food Chemistry, 47(1), 1–6. https://doi.org/10.1021/jf980712x
Wiley, R. C. (2017). Preservation Methods for Minimally Processed Refrigerated Fruits and Vegetables. V F. Yildiz & R. C. Wiley (Ed.), Minimally Processed Refrigerated Fruits and Vegetables (s. 187–237). Springer US. https://doi.org/10.1007/978-1-4939-7018-6_6
Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Raybaudimassilia, R., Mosquedamelgar, J., & Martinbelloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121(3), 313–327. https://doi.org/10.1016/j.ijfoodmicro.2007.11.010
Tzortzakis, N. G. (2007). Maintaining postharvest quality of fresh produce with volatile compounds. Innovative Food Science & Emerging Technologies, 8(1), 111–116. https://doi.org/10.1016/j.ifset.2006.08.001
Gutierrez, J., Barry-Ryan, C., & Bourke, P. (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology, 124(1), 91–97. https://doi.org/10.1016/j.ijfoodmicro.2008.02.028
Lanciotti, R., Corbo, M. R., Gardini, F., Sinigaglia, M., & Guerzoni, M. E. (1999). Effect of Hexanal on the Shelf Life of Fresh Apple Slices. Journal of Agricultural and Food Chemistry, 47(11), 4769–4776. https://doi.org/10.1021/jf990611e
Lanciotti, R., Gianotti, A., Patrignani, F., Belletti, N., Guerzoni, M. E., & Gardini, F. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science & Technology, 15(3–4), 201–208. https://doi.org/10.1016/j.tifs.2003.10.004